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A free-electron laser, which employs a high-density thick electron beam, of a thickness compara-
ble to the wiggler wavelength, is considered. Full transverse dependence of the wiggler field as well
as equilibrium self-fields of the beam are taken into account. We identify a domain in parameter
space where the electron beam is wholly resonant and the gain scales as in the one-dimensional
theory of the free-electron laser in the Raman regime. A family of electron-density radial profiles is
shown to have a low shear in the resonance parameter and thus to exhibit a particularly high gain.

I. INTRODUCTION

In order to increase the gain and the power in the free-
electron laser (FEL),! it is desirable to employ a high-
current electron beam. Practically, because of the strong
repulsive self-fields of the beam, it is difficult to generate a
high-current electron beam with a small cross section.
Therefore, an increase in the current of the electron beam
is usually accompanied by an increase in the cross sec-
tion. However, the increase of the electron beam cross
section in FEL’s is usually limited by the requirement
that the radial dimensions of the beam be much smaller
than the wiggler wavelength. Usually, when the beam
cross section becomes comparable to the wiggler wave-
length, the radial gradients of the wiggler field and of the
equilibrium self-fields of the beam introduce shear into
the parameters determining the resonance conditions,
and prevent the beam from being wholly resonant. Thus,
FEL experiments which employ high-current electron
beams with large cross sections are usually forced to em-
ploy wigglers with long wavelengths. For an electron
beam of a given energy, the increase in the wiggler wave-
length is followed by an increase in the radiation wave-
length. One of the consequences of a large cross section
of the beam and the resulting long wavelength of the
wiggler is therefore, the difficulty in generating short-
wavelength radiation. For example, the Livermore FEL,
which employed an 850-A electron beam of a 0.8-cm ra-
dius together with a wiggler of a 9.8-cm wavelength, pro-
duced radiation of an 8.6-mm wavelength.2 Nevertheless,
by performing a stability analysis of an equilibrium which
was derived by a new formalism,® we have recently
shown* that under certain conditions, a low-density thick
electron beam, of a thickness comparable to the wiggler
wavelength, can be wholly resonant. A FEL employing
such a beam would operate in the strong-pump regime.
In this paper we explore the possibility of employing a
high-density thick electron beam in a FEL operating in
the Raman regime with an even higher gain. We show
that there is a family of radial density profiles which have
small shear in the resonance parameter and thus exhibit a
particularly high gain. We identify also constraints on
the parameters in the thick-beam FEL which limit its ad-
vantages. This study of a high-density thick beam FEL
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differs from previous three-dimensional analytical
theories which dealt with beams of transverse dimensions
smaller than the wiggler wavelength and which neglected
equilibrium self-fields.’~’

The possibility of employing high-density thick elec-
tron beams has significant practical importance. For a
given density, one could increase the current by increas-
ing the beam cross section without increasing the wiggler
wavelength. On the other hand, one could decrease the
wiggler wavelength in order to obtain radiation of shorter
wavelength without necessarily having to decrease the
beam cross section and total current. Thus the use of
high-density thick electron beam enables one to increase
the total current and to improve the gain and power of
FEL’s for various radiation wavelengths.

In Sec. II we derive the governing equation. In Sec. III
we show that the shear in the resonance parameter is ex-
pressed through the presence of a continuous spectrum in
the eigenvalue equation. The vanishing of the shear for a
specific family of radial density profiles thus corresponds
to the shrinking of the continuous spectrum to a point
and to an increase in the gain. We demonstrate this by
numerical examples.

II. DERIVATION OF THE GOVERNING
EQUATION

A. The equilibrium

We consider a helical cold flow of electrons, which, in
its steady state, depends only on r and ¢ (=6—kz), and
which is driven by an M multiple external magnetic heli-
cal wiggler and is confined by a uniform axial magnetic
field. For the equilibrium we use the formalism
developed by Weitzner et al.? for a relativistic helically
symmetric cold fluid, and expand the quantities, as in
Refs. 3 and 4, in the small parameter €. This parameter
measures the ratio of the magnitudes of the perpendicular
and parallel momentum components, as well as the ratio
of the magnitudes of the external wiggler and uniform ax-
ial magnetic fields. Contrary to Ref. 4, where we studied
the low-density case of density second order in €, here we
allow the density to be first order in €. In this case of
high density, the equilibrium self-fields appear in the
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relevant low-order expansion and play a major role in the
stability analysis. We assume also that to lowest order

the beam is monoenergetic, with kinetic energy
(v —1)mc?, where
y=0(e "), p,>0

and that to lowest order the beam has no perpendicular
momentum. The approximated equilibrium under these
assumptions was presented in Ref. 3. In this subsection
we state the main results.

The normalized magnetic field B [the magnetic field
multiplied by e /(mc?k ), where e and m are the electron
charge and mass, and c is the velocity of light in vacuum]
is of the form

B, =B *M(r)e™é L B{~M(r)e M1 0(" "),
BB=B(H+M)(r)eiM¢+B(e—-M)(r)e —iMdb+_B‘60)(r)

+0(e ") ,

B,=Bo+B{™M(r)e™é 1 B{-M(r)e~M¢0( ") .

The explicit form of the various coefficients can be ex-
tracted from Ref. 3. Here B/™’, B{™™) and B{*™’ are
the wiggler field components and B’ is the azimuthal
self-field of the beam. They are all O(elwp” ). The axial
component of the wiggler field is comparable both to the
transverse components of the wiggler field and to the az-
imuthal self-magnetic field of the beam. The external
uniform field B, is O(e "7). The normalized density h
[the density multiplied by 47e?/(mc*yk?)] and the nor-

J
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malized electrostatic potential [the potential multiplied
by e /(mc?)] are given as

h=h(r)+0(€),
S=0,(r)+0( ),

where h, is O(¢), @, is O(e' ?7), and they are related by
Gauss’s law,

(rdy ), /(k*r)=hy, . (1)

The beam energy is

y=y0+y,(r)+0(627’]") ,

Pi)

where 7, is 0(61 7). Also, y and ® are related through

y—d=E(X) .

Here E is the total energy of the fluid and X is the stream
function,

2-p,

X=By+X,(r)+0( '),

where X is O(e' ’7). In the case of low density, ¥, was
zero and we chose an equilibrium of a particular energy
profile y,(7).* In the present analysis, we treat the more
physical case of uniform total energy, E(X)=7,, and thus

71—P,=0. (2)

Both y, and &, are functions of r only. The cylindrical
components of the normalized momentum (the momen-
tum divided by mc) are

MA /(kr){ar[Iy(Mkr)] ,+M*,,(Mkr)}cos(M¢) 2-p
u—= 2’ 2 +O(€ 7) y
(M*—a*)
. —M?* A4 /kr)(r[ 1y (Mkr)] , +aly(Mkr)}sin(Mé) N X,(r) +O(62‘p’) ,
(Mz——az) (krBQUJQ)

w:w0+(7/0/w0)‘}/,+0(62~p7) )

and A4 is O(el %), The term proportional to X, in v
expresses the azimuthal drift of the beam due to the
external axial magnetic field and the self-magnetic and
electrostatic fields. Here a is By /w,. Some of the quan-
tities from Ref. 3 have been made nondimensional. The
normalized density here is the normalized density of Ref.
3 divided by k2. The magnetic field and the stream func-
tion are divided here by k.

In the present analysis, the axial component of the
wiggler field does not contribute to the momenta to
lowest order. The axial component of the wiggler field is
comparable to the transverse components, but the trans-
verse velocity is smaller than the axial velocity. As a re-
sult, the force which is a product of the axial wiggler field
and the transverse velocity is smaller than the force

which is a product of the transverse wiggler field and the
axial velocity. However, near the resonance between the
wiggler and the guide fields, the contribution of the axial
component of the wiggler field could be crucial,® in which
case our expansion would be invalid. In order to exclude
the above resonance, we require that M*—a? is not too
small and explicitly that

M*—a’=0(1) .

B. The linearized equations

We now turn to the stability analysis. We seek a solu-
tion for the perturbed quantities of the form
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2 ﬁf‘”(r)exp(ilcﬁ) exp[i(qz-—(x)ct)] .3
l=—o

We limit ourselves to the case of the FEL resonance,
P,=2p,, where p, expresses the order of magnitude of
w/k,

w/k=0(e ).

We also assume the eigenvalue g to be such that g /k is

also O(e ’®). We substitute the form (3) for the per-
turbed quantities in the linearized cold fluid and
Maxwell’s equations, and obtain an infinite set of coupled
ordinary differential equations. Careful examination of
the orders of magnitude of the various quantities shows
that the momentum equation for dw'/ =™, the continuity
equation for 8h'~M™ and Gauss’s law for SE!~™
decouple from the rest of the equations under the follow-
ing three conditions: if

Po=1,

if for some /, the normalized eigenvalue v,

9
X I+M

V="

w
Wq 0

’

)
— % Vot

is O(¢€), and if the normalized wave electric field 8E [the
field multiplied by e/(mc2k)] has only / component to
lowest order. A similar truncation procedure was per-
formed in Ref. 4 for the low-density case. Here, because
the density is higher, we have to use Gauss’s law and can-

J

(r8E"+ir8EY)

d |18 /
L =2 “(1+
S l’ ar l+§ 2vwk r2(1_2)

1
k

The boundary conditions are the regularity of 8E'” and
8E) at the origin, and

9

E;(rﬁE,(”),:R=0=8E‘e”(R) ,
following the assumption that a perfectly conducting wall
is located at r =R. The mismatch parameter & is

2
wﬂ-w]
Wy

a)z—

and £/k? is O(1). The right-hand sides of Eqs. (4) are
O(1), and thus to lowest order we do not have the well-
known vacuum waveguide modes, nor can we use pertur-
bation techniques to find the eigenvalues. These have to
be found by a numerical solution of the differential equa-
tions (4). The eigenvalue v is O(¢€) and not O(€*?) as in
Ref. 4. Thus the gain here is expected to be higher. The
eigenvalue v is

Oltho/kK) *u/w],

similar to the scaling in the one-dimensional (1D) theory
of the FEL in the Raman regime. Thus we have found a

hy(w/k) (uM+ip™)(y —MSED v ~MBE)
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not neglect SE!' =™, This corresponds to an operation in
the Raman regime. Solving this finite set of algebraic
equations gives us the perturbed density

ih(w/k)u'~M8E" +v ~MsE)

Bh(l——M):_ Z ,
wolv—g, (N][lv—g_(r)]
where
[0} w ) '/
gk(r)z_ q) + ( u(ﬂ!) 2+ U“W) Z)i
+ P T wore fuy™ | [vi™ | wy

We used the equality (2) and neglected the drift velocity
X,/(krByw,), since in our case of a relativistic beam
(p,=7), this velocity is O(€*/?). The quantities u|=
(= [2"d¢e™™M%u) are O(e'/?). The functions g.(r) ex-
press the shear in the resonant denominator. They con-
sist of three terms; the first represents the influence of the
self-electrostatic field, the second represents that of the
radial dependence of the wiggler field, and the third
represents that of the radial dependence of the beam den-
sity. However, in our ordering, they are all O(¢) as is the
eigenvalue v. A different choice of the parameters will
usually result in a v that is smaller than the other terms,
and thus weaken the instability. Because of the particu-
lar ordering of the various quantities, the expansion is
uniform across the beam. The whole beam is resonant
and the perturbed density is large and is of the same or-
der of magnitude across the beam. We now substitute the
perturbed current into Maxwell’s equations and obtain
the final set of equations,

wé(v——g+ Wv—g_)

domain in parameter space where the shear does not dis-
tort the scaling.

A thick-beam configuration which scales as in the one-
dimensional theory is important in the following sense.
For an electron beam of given energy, perpendicular ve-
locity and density, the actual gain in a FEL is usually
smaller than the gain predicted by the 1D theory. This
is, firstly, because the gain attenuates according to the
filling factor, which reflects the fact that the electron
beam cross section is smaller than the wave beam cross
section. Secondly, this is because not all the electron
beam is resonant, as a result of inhomogeneities intro-
duced by the transverse wiggler gradients and the static
self-fields of the beam. One could increase the filling fac-
tor by positioning the beam in such a way as to overlap
the peak of the wave mode or by exploiting a self-
focusing of the wave. If possible, one could also increase
the density by reducing the cross section of the beam. In
the latter case, the gain may increase because of the den-
sity increase, despite the increase in diffraction which
reduces the gain. However, for given beam energy, per-
pendicular velocity, and density, the use of a thick elec-
tron beam which is wholly resonant with a cross section
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similar to the cross section of the wave, as we suggest,
provides a natural way of increasing the filling factor to
order 1. In this sense, the scaling of the gain as in the 1D
model corresponds to a higher gain. It is true that, as
was shown here, operating the thick-beam FEL is subject
to several constraints. Particular relations between the
orders of magnitude of the various quantities have to be
satisfied. For example, if the frequency were increased,
both the density and the transverse velocity would have
to be decreased, and this would result in a reduction of
the gain. Thus these constraints limit the advantages of
the thick-beam FEL. One may prefer a lower-current
thin beam, where the accompanied diffraction of the radi-
ation reduces the gain, but where there is a larger wiggler
field than the one allowed in the thick-beam configura-
tion. Which configuration results in a higher gain de-
pends on the particular parameters under consideration.
For cases where there are bounds on the wiggler intensity
and on the beam density, the thick-beam FEL
configuration suggests an additional option for increasing
the gain by increasing the cross section of the beam and
the total current.

One should note which are the equilibrium quantities
that affect the final form of the linearized equations (4).
The equilibrium transverse momentum appears in both
the numerator and the resonance denominator of the
source term on the right-hand side (rhs) of the equation.
In deriving the expression for the transverse momentum
the full transverse dependence of the wiggler field was
taken into account. The equilibrium self-fields as well as
the axial wiggler component affect the equilibrium trans-
verse momentum to higher order only. However, the
equilibrium self-fields do affect Eq. (4) in a crucial way
through their presence in the resonance denominator,
determining the radial dependence of y [Eq. (2)]. Thus
both the full transverse dependence of the wiggler field
and the equilibrium self-fields appear in the governing
equation (4).

III. REDUCING THE SHEAR BY TAILORING
THE DENSITY RADIAL PROFILE

In this section we examine the conditions under which
the shear in the resonance parameter is reduced and the
gain is increased. The eigenvalues v which satisfy, for
some r between zero and R, the equalities

v=g _(r) (5a)
or
v=g (r), (5b)

comprise the continuous parts of the spectrum. The non-
real eigenvalues are located in the neighborhood of the
continuous spectrum, which is real. It is plausible that
when the continuous spectrum becomes larger, the imagi-
nary parts of the nonreal eigenvalues become small. This
can be explained physically, since a large continuous
spectrum corresponds to a large shear in the resonance
parameter, which results in the thinning of the resonant
layer. The unstable mode becomes localized near the thin
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resonant layer, and the growth rate decreases. Thus, in
order to increase the gain, conditions should be sought
under which the continuous spectrum shrinks.

We look for density profiles for which g, or g_ is a
constant. By using Eq. (1), we obtain the following non-
linear equation for ®,:

r¢1,rr+q)l,r

w

_ ( u(M) 2+ U(M) 2)_B :0’
Sl 4 |

[0}
—TYo 2(1)]
Wo

where @, and its derivative should be regular. We
checked the assumption that the growth rate is high for
these density profiles as follows. We picked a constant 8
and solved Eq. (6) for the density profile 44(r). Then we
solved Eqgs. (4) for various &’s and looked for the highest
imaginary part of v. We varied £ again, and looked for
the highest imaginary part of v for other density profiles
which are related to the preferred density profile hg(r)
through

’h(B”(r)EshB(r) . (7)

By varying the parameter s, we vary the total current of
the beam while keeping the relative density profile un-
changed. When s equals 1, the current is that of the pre-
ferred density profile.

In Fig. 1 three preferred normalized density profiles
wh  /k are plotted for three values of the parameter 5. In
Fig. 2 the maximum normalized growth rate (w/k)Imv
for the density profiles k5’ is plotted versus s for these
three values of 8. When s is increased towards the value
1, the growth rate increases rapidly. This is a combined
effect of the increase of the density and of the shrinking
of the shear. When s is increased above the value 1, the
increase in the growth rate stops and the growth rate
soon decreases despite the increase in the density. For s
larger than 1, the increase in the shear dominates. In the
numerical examples, kR is 1.5, ] =1=M, and the normal-
ized wiggler strength A%w/k is 1. The unstable mode
was that of one node, which for the vacuum case is re-
duced to TE,;.

We now give numerical examples. As a first example,
let us assume that w/k equals 50. For k=2.25 cm~!, the
radiation wavelength is approximately 550 um and the
waveguide radius is 0.7 cm. The wiggler and the guide
field intensities are 545 G and 11 kG, respectively. The
total beam current is 3.8 kA for the preferred density
profile (B=—1.5). The beam energy is 2.04 MeV. The
growth rate is 0.043 cm~! (39 dB/m). As a second exam-
ple, we assume that w/k equals 10 and k=1.5 cm™'.
Now the radiation wavelength is larger, approximately
4.1 mm, and the waveguide radius is 1.05 cm. The
wiggler and the guide field intensities are 817 G and 3.2
kG, respectively. The total beam current is again 3.8 kA
for the same preferred density profile. The beam energy
is 610 keV. The growth rate is 0.142 cm~! (129 dB/m).

The high gain in these examples was achieved by hav-
ing a high-current thick beam which is wholly resonant.
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FIG. 1. The preferred normalized density profiles [s=1 in
Eq. (6)] for (a) B=—1.5, (b) B= — 1.0, and (c) B=0.

As mentioned before, there is an accompanied constraint
on the magnitude of the transverse velocity. While we
explored here a way to increase the gain by increasing the
current of the beam, there is an alternative way of in-
creasing the gain by propagating a lower-current thin
beam but with a larger wiggler field. The thick-beam
FEL is not always preferable to such alternative ways,
but it is an additional option, not dealt with before,
which in some cases may be advantageous.

We note also that all the cases which satisfy the condi-
tions we described in order for the high-density beam to
be wholly resonant have input powers of the same order
of magnitude. The current is proportional to Ayk? and
thus the power is proportional to hwk, which is O(k?).
Because of the high currents, even with a modest
efficiency and without wiggler tapering, the output power
of the thick-beam FEL will be high. Since the whole
thick beam is resonant, it is reasonable to assume that the
efficiency will not be lower than in the usual thin-beam
FEL. An efficiency of 6.7% will result will result in an
output power of 0.5 GW in the above first example and of
160 MW in the second example.
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FIG. 2. The maximum normalized growth rate vs s for (a)
p=—1.5,(b) B=—1.0, and (c) B=0.

One could argue that beam radial-profile control is not
easy to achieve. However, the results are not very sensi-
tive to deviations from the preferred density profiles.
Once the flow parameters of a thick-beam FEL have been
chosen to satisfy the relations described above, it is
sufficient to employ a beam of a density profile similar to
the preferred profile in order to increase the gain.

In summary, in this paper the possibility of a high-
density thick-beam FEL was explored. We studied the
FEL interaction with full transverse dependence of the
wiggler field and with equilibrium self-fields of the beam.
We identified a domain in parameter space, where the
gain scales as in the 1D theory of the Raman regime,
despite the shear introduced by the radial gradients. The
shear in the resonance parameter was expressed as a con-
tinuous spectrum of eigenvalues. It was shown that by
tailoring the electron-density radial profile, one could
eliminate this shear and thus increase the gain.
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